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It is well known that the hypoxia-induc-
ible factor 1 α (HIF1α) is detectable as 

adaptive metabolic response to hypoxia. 
However, HIF1/HIF1α is detectable 
even under normoxic conditions, if the 
metabolism is altered, e.g., high prolif-
eration index. Importantly, both hypoxic 
metabolism and the Warburg effect have 
in common a decrease of the intracellular 
pH value.

In our interpretation, HIF1α is not 
directly accumulated by hypoxia, but 
by a process which occurs always under 
hypoxic conditions, a decrease of the 
intracellular pH value because of meta-
bolic imbalances. We assume that HIF1α 
is a sensitive controller of the intracellu-
lar pH value independently of the oxygen 
concentration. Moreover, HIF1α has its 
major role in activating genes to elimi-
nate toxic metabolic waste products (e.g., 
NH

3
/NH

4
+) generated by the tumor-

specific metabolism called glutaminoly-
sis, which occur during hypoxia, or the 
Warburg effect. For that reason, HIF1α 
appears as a potential target for tumor 
therapy to disturb the pH balance and to 
inhibit the elimination of toxic metabolic 
waste products in the tumor cells.

The transcription factor hypoxia-induc-
ible factor 1 (HIF1) has been described 
as one of the key prognostic tumor fac-
tors that is accumulated and detectable 
in response to oxygen deprivation. Under 
hypoxia, HIF1α will be not hydroxyl-
ated and therefore not degraded by the 
von Hippel-Lindau tumor suppressor 
protein.1 As a consequence, HIF1α accu-
mulates and dimerizes with HIF1β to 
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form the transcription factor HIF1, which 
then activates a panel of target genes (e.g., 
GLUT-1, GLUT-3, CAIX and VEGF).1 
HIF1/HIF1α appears to be an essential 
protein for an adaptive metabolic response 
to hypoxia for the survival of tumor and 
non-tumor cells.2

Under different but specific circum-
stances, including stress, growth factor 
application, oncogene activation (e.g., 
PI3K-Akt, Ras, Raf, Myc) or the den-
sity of cell cultures; however, HIF1/
HIF1α is detectable even under normoxic 
conditions.1,3-7

However, the following questions 
remain: Why is the hypoxia-inducible fac-
tor 1α even detectable under normoxic 
conditions, and what is the common cause 
for both the normoxic and hypoxic accu-
mulation of HIF1?

There is a consensus that multiple fac-
tors pertaining to the microenvironment, 
such as the local pH and metabolite con-
centrations, modify hypoxia-responsive 
protein expression.8-11

It is well known that a normoxic HIF1 
accumulation can be induced by growth 
factor stimulation (e.g., insulin or EGF), 
which induces proliferation and modi-
fied cell metabolism.5,6,12 Nevertheless, 
the growth factor-induced normoxic accu-
mulation of HIF1/HIF1α is not caused 
by a direct response to oxygen depriva-
tion. Rather the application of insulin 
can increase the local concentration of 
intracellular oxygen in a tumor cell.13 This 
finding is a first example of a general oxy-
gen-independent accumulation of HIF1.

Furthermore, metabolic intermediates 
have an impact on the accumulation of 
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altered metabolism by the Warburg effect 
or hypoxia have to be neutralized by the 
cell because of an increased risk of new 
oncogenic alterations.

Especially in the context of the HIF1 
level, the impact of different factors like 
cMyc, STAT3, mTOR, p53/MDM2 on 
the Warburg effect and glutaminolysis 
should by further investigated.12,31-37 The 
fact that HIF1 is involved in mitochon-
drial autophagy processes and, in this 
case, in the regulation of mitochondrial 
respiration is important.2,38 It seems that 
HIF1 help to reduce the amount of toxic 
metabolic waste products, which should 
have an effect on the lifespan of cells or of 
a whole organism too.39

Role of HIF1 in pH Regulation

We suggest that the regulation of HIF1 is 
not directly caused by oxygen deprivation 
but by a change in the pH

i
 value and by a 

change in the equilibrium of intracellular 
ions. We assume that HIF1 is a sensitive 
controller of the intracellular pH value 
independently of the oxygen concentra-
tion. We think that the metabolic glu-
taminolysis pathway could be the main 
regulator/pacemaker for the accumula-
tion of HIF1. A change in the pH

i
 value 

can be caused, for example, by the higher 
ammonia/ammonium concentration gen-
erated by the metabolic desamination 
of glutamine and/or glutamate during 
glutaminolysis, which occurs during the 
Warburg effect or even under hypoxia. 
It is understandable that a tumor-specific 
altered metabolism, which consumes the 
important nitrogen carrier glutamine, 
generated high concentrations of the very 
toxic metabolic waste product NH

3
. Even 

tumor cells have to find a strategy to elim-
inate such toxic substances, immediately.

Experiments have demonstrated that 
ammonium supplementation causes a 
brief, initial intracellular alkalinization, 
followed by a rapid acidification.24,26 
Intracellularly originated metabolic 
ammonium ions are rapidly excreted to 
the extracellular space, which causes the 
intracellular accumulation of one pro-
ton (H+) per NH

3
 molecule released.24,25 

Because of this, the intracellular pH 
value reaches a new, lower steady-state 
value, a value at which the former 

Glutamine is usually used as a nitrogen 
carrier to eliminate NH

3
/ NH

4
+ out of the 

cells. Tumor cells especially use glutamine 
as a metabolite. This finding is remark-
able, because glutaminolysis is performed 
by cells under normoxic, hypoxic and 
even under anoxic conditions.19 Strikingly, 
DeBerardinis et al. have found that most 
of the α-nitrogen from glutamine deg-
radation was secreted from the cells as 
ammonia and alanine.17 Other authors 
have described the importance of gluta-
minolysis and have suggested that the 
Warburg effect may be a metabolic con-
sequence secondary to nitrogen anabolism 
(glutaminolysis).20

Therefore, Dang et al. have concluded 
that glucose metabolism (glycolysis) is 
insufficient to sustain a growing and divid-
ing cancer cell. The Warburg effect requires 
glutamine for both redox balance and lipid 
synthesis.21 By rethinking the Warburg 
effect, the amino acid glutamine seems to 
be very important for tumor cells.18,22,23 An 
important consequence of glutaminolysis 
and the release of ammonia is a decrease of 
intracellular pH value (pH

i
).24,25

However, hypoxia always decreases 
the pH

i
 value of the cell because of an 

alteration in the metabolic response 
(e.g., lactate and ammonia generation).26-29 
Recently, Ward and Thompson ascer-
tained that altered metabolism by itself 
can be oncogenic and might be a hallmark 
of cancer.30 Most toxic metabolic waste 
products generated by an overstimulated/

HIF1. Fumarate and succinate, two citric 
acid cycle intermediates, cause a stabiliza-
tion of HIF1α in fumarate hydrogenase 
and succinate dehydrogenase-deficient 
tumors.14 Moreover, Kwon and colleagues 
have postulated that glutamine or glucose 
deprivation inhibits the accumulation of 
HIF1/HIF1α under hypoxic conditions.8 
Altogether, these findings indicate an 
important impact of an adaptive meta-
bolic response on HIF1 accumulation that 
is independent of oxygen deprivation.

The crosstalk of HIF1 and the glucose 
metabolism in the context of the Warburg 
effect15 was demonstrated in detail.16 
Denko assumed that normoxic/hypoxic 
accumulation of HIF1 is a benefit to the 
tumor not by increasing glycolysis, but 
by decreasing mitochondrial activity. The 
reduced mitochondrial function yields an 
increase of anabolic substrates because of 
an increased glucose uptake of the tumor 
cell and a decreased consumption for 
energy generation.16

On the other hand, increased anabolic 
substrates can be also generated by incor-
poration of glutamine in the tricarboxylic 
acid cycle as a carbon source.16,17 Both glu-
cose and glutamine are rapidly consumed 
during proliferation of most cancer cells.17

Under normoxic conditions, the 
metabolism of glutamine (glutaminolysis) 
is a major part of the Warburg effect.18 
A high consumption of glutamine seems 
to be a general phenomenon during the 
rapid proliferation of most cell types.17 

Figure 1. Part of the glutaminolysis pathway: release of toxic ammonia during catabolic gluta-
mine/glutamate degradation and importance of α-ketoglutarate as the acceptor of ammonia 
during anabolic metabolism. the intracellular concentration of α-ketoglutarate and ammonia are 
the key regulators for nitrogen metabolism, pHi value and HiF-accumulation. HiF1 is the molecular 
sensor and regulator of the intracellular pH value.
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or GLUT3, transcriptional targets of 
HIF1.1,26,27,42 GLUT1 increases the con-
centration of intracellular glucose, and 
an increase in the glucose concentration 
is also indicated for patients who suf-
fer from hyperammonaemia. The acute 
hyperammonemia (more than 500 μM 
NH

4
 in blood) is treated by a high amount 

of glucose to alter the catabolic conversion 
of amino acids to an anabolic conversion. 
The described paradox that catabolism 
and anabolism can coexist in the case of 
hypoxia26 can be explained by our inter-
pretation of the function of HIF1.

Second, ammonia/ammonium has to 
be transported out of the cell. Ammonium 
can be actively removed by the Na+/NH

4
+ 

and Na+/H+ co-transporters.26 The excre-
tion of NH

4
+ creates a persistent acid load 

on the cells and is facilitated by the nega-
tive charge of the membrane potential and 
the gradient of ammonia across the cell 
membrane.24,25 However, a pH-depen-
dent amount of extracellular free ammo-
nia (1% at a pH value = 7.2, 2% at a pH 
value = 7.4) remains.24 Once outside of the 
cells, the ammonia can re-enter the cells 

We propose that HIF1α/HIF1 is the 
key indicator and regulator of high con-
centrations of ammonia/ammonium and 
is a sensitive controller of the intracellular 
pH value. We suggest that a high intra-
cellular H+ concentration is pivotal for 
the lack of hydroxylation of HIF1α, as 
has been discussed by Chiche and col-
leagues.26 This indicates that the common 
reason for both the normoxic and hypoxic 
accumulation of HIF1α/HIF1 is the need 
to regulate the pH

i
 value, which is essen-

tial for cell metabolism.

Which Functions of HIF1  
Support our Interpretation?

First, HIF1 can convert the catabolic 
metabolism of amino acids (glutami-
nolysis) to an anabolic process (e.g., 
α-ketoglutarate and ammonia are con-
verted to glutamate). This can be achieved 
by the activation of glycolysis, which can 
generate NADP(H) as well as ATP, but 
can also supply the citric acid cycle with 
metabolic substrates. The activation of 
glycolysis can be induced by GLUT1 

equilibrium between the H+ and OH- ions 
is disturbed. The proton concentration is 
increased, whereas the OH- ion concen-
tration is massively decreased and partly 
replaced by the basic molecule, NH

3
/

NH
4
+ (pk

s
 = 9.2). However, even a lower 

steady-state pH value is critical for the 
cells if the concentration of NH

3
/NH

4
+ 

further increases. Ammonia can diffuse 
across all membranes but will be proton-
ated to ammonium at a lower pH value, 
such as in lysosomes. Such a mechanism is 
toxic, because ammonium cannot diffuse 
out of the cell compartment and induces 
functional inhibition of processes in the 
lysosomes, including iron metabolism.40 
Notably, even slight changes of the pH

i
 

could be harmful: a decrease of 0.2 in the 
pH value is sufficient to deactivate phos-
phofructokinase completely.26,41

For this reason, it is essential for the 
survival of the cell to stabilize the pH

i
 

rapidly and to reduce high NH
3
/NH

4
+ 

concentrations, because toxic intermedi-
ates, such as ammonia/ammonium, and 
changes in the pH value are detrimental 
even to tumor cells.

Figure 2. the elimination of ammonia/ammonium out of the cell would be facilitated by the HiF1-induced activation von CAiX. CAiX causes an 
extracellular acidification and milieu in which ammonia can be protonated to ammonium. At a higher extracellular pH value (pHe), more ammonia can 
re-enter the cell and cause an intracellular acidification. the HiF1-induced GLUt-1 activation lead to an activation of glycolysis, a supply of the citric 
acid cycle with α-ketoglutarate and an anabolic metabolism (α-ketoglutarate and ammonia are converted to glutamate as shown in Fig. 1).
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However, the logical discrepancy 
between the activity and the occurrence 
of HIF1α/HIF1 under both hypoxic and 
normoxic conditions can be solved if we 
consider HIF1α/HIF1 as an indicator and 
regulator of the intracellular pH value/ion 
equilibrium.

In addition, acidic tumor environment 
could be a good target for tumor therapy, 
because the acidic milieu is essential to 
eliminate the toxic molecule ammo-
nia/ammonium out of the tumor cell. 
Inhibition of HIF1 and/or HIF1-target 
genes could be a strategy and therapeutic 
approach, which causes an accumulation 
of toxic metabolic waste products (e.g., 
ammonia/ammonium) generated by the 
tumor-specific metabolism (Warburg 
effect or hypoxia) to poison the tumor. 
[Fig. 2 adapted from Chiche et al. J Cell 
Mol Med 2010; 14:771-94  (Fig. 7)].
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